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Abstract. In view of the recently proposed entropic uncertainty relations several characteri- 
sations of ‘maximal information’ and ‘minimal uncertainty’ are compared and applied to 
position and momentum. It is argued that a sufficiently refined entropic uncertainty relation 
might require the general concept of POV observables as used in stochastic quantum 
mechanics. 

1. Introduction 

In recent years several authors have presented formulations of quantum uncertainty 
relations ( U R )  in terms of entropy or information (‘entropic UR’). Their aim was to 
replace the usual ‘standard UR’ (for standard deviations) 

(A,A)2(A,B)2 a : / ( [A,  Bl-),I2 + i l({A, N+), - 2(A),(B),12 ( 1 )  

by an  inequality of the form 

I ,  ( A )  + I, ( B ) s IO( A, B ) 
as more adequate expression for the ‘uncertainty principle’ [ 1-61. It is the purpose of 
this paper to show that this viewpoint needs further elaboration and refinement. It 
appears desirable to establish not just the supremum of (2)  as an overall measure of 
uncertainty but rather a more refined state-dependent bound 

( 3  1 I ,  ( A )  + I, ( B ) I: (A ,  B ) . 
This is because, firstly, a rigorous comparison between the entropic and the standard 
UR must include an account of their logical relationship. Secondly, we shall encounter 
examples of non-commuting observables possessing trivial maximum Io (A ,  B )  = 0 in 
( 2 )  for which the search of ‘local’ maxima I ; ( A ,  B )  turns out to be highly useful. 

Of course, we have not been able to derive a general relation of form ( 3 )  but instead 
shall compare various characterisations of ‘maximal information’ and point out their 
connection with ‘minimal uncertainty’ ( 3  2 ) .  These notions will be applied to spectral 
projections of position and momentum where they provide a completion and informa- 
tion theoretic interpretation of previous results by one of the authors [ 7 ]  (§  3 ) .  The 
relation between the standard and the entropic formulations can be studied up to now 
only for position and momentum UR. It  has been shown that the ‘Everett (entropic) 
U R ’  (of form ( 2 ) )  implies the famous Heisenberg U R  A q A p  3 h / 2  [ 1 , 2 , 4 , 8 ] .  One can 
take a further step towards a comparison of ( 1 )  and ( 3 )  for position and momentum 
in the framework of stochastic quantum mechanics (0 4 ) .  
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2. Maximal information and minimal uncertainty 

In the following considerations we shall describe observables as POV (positive-operator- 
valued) measures (also called effect-valued, or semispectral measures) as they occur, 
for example, in quantum optics, quantum theory of open systems, stochastic quantum 
mechanics and other fields of quantum physics. That is, an observable will be a positive, 
U additive, normalised map from some Boolean algebra into the set of Hilbert space 
‘effects’, A : Z + Z?( X). Effects are positive self-adjoint bounded operators with spec- 
trum within [0, 11 ( O s  E s 1) so that their expectation values can be interpreted as 
probabilities. Since the projections 9( X) E 8( X) are also special effects, the usual 
spectral measures are subsumed under the above generalised observable concept. If 
projections are interpreted as properties of quantum systems it can be shown that 
effects in general represent a kind of ‘unsharp’ property [9]. 

The Deutsch-Partovi [5,6] entropic U R  can immediately be generalised to effect- 
valued observables. Let A, B be a pair of observables, 8 ={E‘}ls, c_ % ( A ) ,  9= 
{e},E, E % ( B )  be countable subsets of the ranges of A and B such that Z , E ’  =X,F’ = 1. 
We further denote E, = (cp(Elp) for any operator E. Then the information in state cp 
with respect to the partition 8(9) of A ( B )  is 

Z:(A) = ) ; , E L  ln(E;) I : (  B )  = Z,FL In( FJ,)  (4) 

and the sum can be written as 

ZZ(A)+ Z Z ( B )  = Z,,EkF’, In( E b F J , ) .  

Now the following inequalities hold true not only for projections but for the arbitrary 
bounded self-adjoint operators: 

from which we obtain the Deutsch-Partovi U R  

I : ( A )  + Zz( B )  s 2 In ( sup ’, I l E ’ y I l )  

as a realisation of ( 2 ) .  One may also give a sharper state-dependent bound in the 
sense of (3 ) :  

Z:(A) + I:( B )  s 2 In (7) 

In the following we restrict ourselves mainly to ‘simple’ observables (defined on 
the smallest nontrivial Boolean algebra Z = (0, a, a ’ ,  1)): that is, we are interested in 
information with respect to single effects E :  

Z, ( E ) = E,  In ( E, ) + E b In( E ) ( E ‘ =  I - E ) .  (8) 
Non-commutativity or incompatibility of (unsharp) properties E and F will, in 

general, exclude the possibility of measuring or preparing both of them simultaneously. 
In particular, if E = E g ( X ) ,  F = E‘( Y) are position and momentum spectral projec- 
tions associated with bounded measurable sets X ,  Y,  then 

E g ( X ) A E P ( Y ) = O  ( 9 )  
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holds or, equivalently, 

Thus ‘certain’ position and  momentum determinations exclude each other, and the 
question arises as to what ‘degree of certainty’ they can be ‘known’ simultaneously. 
To answer this question, one may take any reasonable characterisation of maximal 
joint knowledge, or joint information. For example, statement (10) can be put into 
the following equivalent forms: 

E, + F, < 2 E,. F,<1. ( 1 1 )  

In [7] it has been shown that the first expression E, + F, can be maximised, and an  
explicit construction procedure for the corresponding ‘state of maximal information’ 
has been given (cf 0 3). Here we shall study the question of maxima for this quantity 
as well as for E , .  F, and for I,(E) + Z,(F) for an  arbitrary pair of effects E and F. 
In particular, we shall show that each quantity can be maximal only if there exist 
states which lead to minimal uncertainty product in ( 1 ) .  Furthermore, in the case of 
projections the maxima of I , ( E ) +  Z,(F) (if they exist) coincide with those of one of 
the quantities E L +  F: and EL F: ( E ”  E {E, E ‘ } ,  F” E {F,  F‘}).  

For maximal E, + F, the variation of 

(cpl~lcp)+(cplElcp)-~(cplcp) 

must vanish which implies the following equation: 

( E  + F)lcp) = (E, + F,)lcp). (12) 
Multiplying with E or with F and taking the expectation yields 

which leads to a minimal uncertainty relation ( 1 )  

(A,E)2 . (A,F)’= [cov,(E, F)]’. 

(Note that the second term in ( 1 )  represents the covariance, or correlation, cov,(A, B )  := 
S(cpIAB+BAIcp)-(cplAlcp)(cp(Blcp) between the observables A and B in the state cp.) 
Similarly, maximising the product E, - F, gives 

(15)  + E,F)lcp) = 2 4  ‘ F,lcp) 

and 

(A,E)2FZ, = (A,F)’E: = -E,F, cov,(E, F )  (16) 

Finally, maximal information sum I , (  E) + I,(  F )  will be realised in states satisfying 

(17 )  
Generally this equation contains all stationary points, e.g. the minimum E,  = E ;  = F, = 
FL = 4, or the joint eigenstates. Since we are looking for states of maximal information 
with respect to positive outcomes for E, F we shall assume E, > f and F, > i. Then 
(17)  implies 

which again leads to (14), ( E ,  # O #  F,). 

(In E ,  - In E ;)( E - E,) I cp) + (In F, - In F;) (  F - F, ) I cp) = 0. 
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and 

( 1 9 )  
1 

a ( A , E ) ' = - ( A , F ) ' =  -cov,(E, F )  
a 

which again gives rise to the minimal uncertainty product (14). We note that due to 
(19) a can be written as a = A,F/A,E so that (18) reads equally 

We have thus shown that all the three notions of maximal information are consistent 
insofar as they imply minimal uncertainty product. However, it will depend on the 
spectra of E and F whether the solutions of the above sets of equations coincide. 
This coincidence will occur if E, = F, which in turn will always hold for projections 
E = E', F = F2-as can be seen readily from equations ( 1 3 ) ,  (16) and (20); the only 
alternative solution E ,  = F i  is excluded by the assumption E ,  > f, F, > f .  This result 
follows from the fact that for projections one has ( A , E ) *  = E, - E :  so that all the 
above conditions can be expressed in terms of the variables E,, F,. It follows further 
that equations (15) and (20) for (p collapse into (12) so that indeed all the three 
approaches lead to identical characterisations of maximal information. 

Before turning to the discussion of position and  momentum we should mention as 
an example of the above calculations the case of two orthogonal spin components. 
Mamojka [ 3 ]  has shown that 

-2In(2)< I,(s,)+ I,(s:)< -ln(2) (21) 
where both bounds are reached by eigenstates of s,, or s, (for maximal information) 
and of sy (for minimal information). Inequality (21) shows that the missing information 
ranges between one and  two bits. Mamojka also noted that maximal information 
coincides with minimal uncertainty, an observation which we have seen to be true for 
arbitrary pairs of simple observables. Finally we remark that the absolute maxima of 
E,. F, and E ,  + F, can be determined in an  elementary way without resorting to 
variational methods (see appendix 1). 

3. The position-momentum example 

Throughout this section E and F denote position and momentum spectral projections, 
respectively: E = E Q ( X ) ,  F = E '( Y ) .  In [7] the sum of probabilities E, + F, has been 
shown to be maximal in the state cp = pm,: 

1 + a  

provided that X ,  Y are bounded measurable sets. Here U:  is the maximal eigenvalue 
of the compact operator FEF and go is the corresponding eigenvector satisfying 

FEFlgo) = 4 g o )  Flgo) = k o )  l lgo l l z  = 1 .  (23) 

Ifo) = a , ' E / g o )  l l f o l l :  = a o Z ( g , / ~ E F l g o )  = 1 Elf , )  = M O )  (24) 

From the considerations of the preceding section it is clear that qm, must be an  eigenstate 
of E + F. This can also be seen directly in the following way. Introduce 
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then due to (23) we have 

EFElfO) = Qil fo)  lgo) = G ' F l f o )  

and cpmi can be written in the symmetric form 

I fo) + I go) 
[2( 1 + & ) ] " 2 '  

I q m i )  = 

Furthermore, ( E  + F ) ( f , + g o )  = (1 + ao) ( fo+go)  which proves 

( E  + F ) l ~ m , )  = ( 1  + ao)lcpm,) E, ,,,, +F,,?,,=1+ao. (27) 

(An especially short proof of (22)-(27) is given in appendix 2 which avoids any 
reference to the detailed theory employed in [7].) We conclude that cpm, maximises 
all the three quantities E, * F,, E ,  + F, and I,( E )  + Z,(F) and minimises the uncertainty 
product A V E .  A,E Yet, as is well known, projections E Q ( X )  and E P ( Y )  possess 
common eigenvectors to eigenvalue 0. (For details and  further references, cf [lo].) 
this shows that Z,(E)+Z,(F) is only locally maximal in (27) and can assume the 
absolute maximum 0. Therefore inequality (6) is seen to be trivial in the present case 
and (7) still does not represent the optimal (least) bound. Clearly, also the uncertainty 
product A,E-A,F only attains now its local minimum which is Icov,(E, F)I =a(  1 - a i )  # 
0 (for a,< l) ,  as the absolute minimum for projections is trivially 0. 

We conclude this section with some comments on two further examples of position 
and  momentum spectral projections. First, let X ,  Y be real half-lines, then E, F are 
known to have no  common eigenvectors [lo]. Still the numerical range of E, F (the 
set of all pairs ( E , ,  F,)) is almost the whole unit square, except the corner points 
(O,O), (0, l) ,  (1, O), (1, 1); this follows immediately from consideration of the set of 
states {cp, = exp(iqP)cp, cpp = exp(-ipQ)cp, q E R, p E R }  for some arbitrary fixed unit 
vector cp. On the other hand, the only stationary points of Z , ( E ) +  Z,(F) allowed by 
(20) lie on  the diagonals of the unit square: E, = F, or E ,  = 1 - F,. Thus there exist 
no  maximal information states in this example and 0 is the supremum. 

In the second example X and Y are assumed to be periodic sets, X = X + d ,  
Y = Y + 27r/d. The corresponding spectral projections have been shown to commute 
[ 101. Accordingly the numerical range is the whole closed unit square with the corner 
points representing the maximal information situations. 

The above two examples denote the extreme cases which one may encounter in 
the search for maximal information of a pair of simple observables: no maxima at 
all-all conceivable maxima realised. It is remarkable that position and momentum 
entail the whole spectrum of possibilities. 

4. Everett UR within stochastic quantum mechanics 

According to the introduction it appears desirable to have an  entropic U R  in the form 
(3 )  with a state-dependent bound; moreover, for a proper comparison with the standard 
UR (1) this bound should contain two terms, one measuring the degree of commutativity 
of the observables A and B in the state cp and the other one measuring their probabilistic 
dependence and correlation in the state. This viewpoint meets a serious obstacle in 
the fact that in conventional quantum mechanics non-commuting observables d o  not 
possess joint probability distributions-which are needed for an  information theoretic 
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formulation of correlation [2]. However, this problem can be and has been solved in 
the framework of stochastic quantum mechanics. In particular, joint observables for 
position and momentum have been constructed, non-commutativity being reflected in 
an irreducible unsharpness of measurement values. In this way one obtains the 
possibility of generalising the Everett UR, 

I,(  Q )  + I ,  ( P )  s -In( e r )  

where 
m 

I , (Q) = J- dqlcp(q)12 Inlcp(q)12 

I , ( P )  = I_, dP14(P)12 InI4(P)l2. 

-m 

cc 

Let WO be a positive trace class operator, Tr( WO) = 1,  V(q, p )  = exp[i(qP -PO)],  
Wqp = U(q,p)  WoU(q,p)-‘, and further let r = R 2  denote the phase space and B(r) 
the Bore1 sets on r. Then the POV measure A :  B(r) + EP(2) defined by 

establishes a positive-definite joint probability functional on Hilbert space X The 
marginals are unsharp position and momentum observables 

A ( X  x R) = Q,(X):= ( X x * f ) ( Q )  

A(R x Y )  = P,( Y )  := (X,*g)( P )  

f ( 4 )  = (41 Wlq) g ( p )  =(PI WlP). 
Grabowski [ 111  proved the generalised entropic U R  

I ,  (Q,) + I,( P g )  s I,( A )  S - In(2m) 

where 

1 
I , (A )  =% I dq dP(cpl WqpI(0) W(cpl WqpIcp)2r). 

The first inequality is due to subadditivity of the entropy functional. The entropic U R  

(31)  has been shown to imply the generalised Heisenberg U R  

(A&, ) 2 ( ~ , ~ g ) 2  3 1 ( h  = 1) (33)  

(A,Q)’(A,P)’ 3 f (34) 

(A,Q,)’= (A,Q)’+(Af)’  ( A , P g ) 2 +  ( A , P ) ’ +  (Ag) ’ .  ( 35 )  

with variances defined through the distributions occurring in (32); moreover, for 
WO = P, (33 )  leads back to the original Heisenberg U R  [ 1 1 3  

since we have 
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Finally, Gaussian states WO= P, lead to equalities in (31) as well as in (33) and (34). 
Thus maximal information and minimal uncertainty can be achieved and will again 
coincide. We conclude with a simple consequence of (31). Following Everett [2] we 
define the correlation information for Qf, Pg as the expectation of the difference 
between conditional information Z,( Q,(Pg) and marginal information I , (  O f ) :  

Thus the entropic U R  for the (unsharp) marginal observables has exactly the desired 
form: one term strictly less than 0 due to non-commutativity and one term-again 
negative-accounting for the correlations. This illustrates some aspects of the concep- 
tual power of the generalised POV observable concept in improving on the flexibility 
of the quantum mechanical formalism. 
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Appendix 1 

Let E, F be a pair of projections which are not orthogonal to each other, i.e. E S 1 - F. 
Then (cplElq)(cplFIq) attains its absolute maximum f A i  for some q0€ 2 if and only if 
(E+F)qo=Aocpo and Ao=IIE+FII. 

ProoJ: First assume ( E  + F)po = hopo and A. = IIE + FII. Taking the scalar product 
with Ecp, and Fcp0 yields (setting (q lE(cp)  = ( E ) q ,  etc) 

A O ( E ) , " =  ( E ) , , + ( W , ,  

A,( F )  'PO = ( F )  'p, + ( FE )V". 

O = ( A o -  l)r(E),"-(F),,,I. 

In particular, (EF) , ,  = (FE) , , ,  must be real and therefore 

Now A. = ( ( E  + FIJ = 1 is equivalent to E + F G  1 which is excluded by assumption. 
This proves that A. = IIE + FII > 1 and thus (E), = ( F ) ,  = A0/2. Consequently, 
( E ) q ( F ) ,  S t l IE+FI12=iAi=  (E)w(F),+,o where theinequalitycomesfromequation(5). 

Conversely, the absolute maximum (supremum) of ( E ) ; (  F ) ,  must be + A i  = 
allE+F1/2. For, considering a sequence v', such that llAVn(I+O for A =  
l(E + Fll Z - ( E  + F )  5 0; then E A Y n  + 0 and FA*, + 0 imply Im( El=)*,, + 0, thus 
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Appendix 2 

Let E, F be projections such that E A F = 0. Then ( E  + F)cp = A V  implies EFEf = 
( A  - 1) ' f ;  FEFg = ( A  - 1)'g with 50 = f + g ,  E f = f ;  Fg = g. Conversely, EFEf = a' i  E f = f  
gives rise to a solution of ( E  + F)cp = Ap with A = 1 +a. The maximal eigenvalue a' 
of EFE leads to the maximal eigenvalue A = 1 + a  of E + F. 

Proof: Any eigenvector cp of E + F is contained in the range ran( E + F )  E ran( E v F )  
so that it admits a decomposition cp =f+ g with E f = J  Fg = g. This decomposition is 
unique since E A F = 0. Then one has 

O =  ( E  + F ) p  -Acp = [Eg  - f (A  - l ) ] + [ F f - g ( A  - l ) ] .  

However, Eg -f(A - 1 )  E r an (F)  and  Ff- g(A  - 1) E ran( E )  so that both vectors must 
vanish due to E A F=O:  

E g = ( A - l ) f = : ~ f  F f = ( A - l ) g = : a g  a z A - 1 .  

Case 1 .  A = 1 yields Eg = 0 = Ff; i.e. EFEf = 0 = FEFg; conversely, EFEf = 0 for Ef = f 
implies F E f =  0 and thus ( E  + F ) f =  E f+  Ff=f+ F E f = f ;  i.e. A = 1. 

Case 2. A Z 1 gives f =  a- 'Eg,  g = C ' F J  a = A  - 1 .  From this one calculates EFEf= 
EFf = aEg = a2f  and similarly FEFg = a'g; conversely, EFEf= a'f gives FEF( Ff) = 
F (  EFEf) = a'FJ ( 1  Ffll' = ( f l  EFE' = u 2 ~ ~ f ~ ~ '  = a 2 .  It is easy to show that a- '  F induces 
a unitary map of the spectral space of EFE for the eigenvalue a' onto the corresponding 
spectral space for FEF, the inverse being i ' E .  Thus, for g = a - ' F f  i t  follows that 
a-'Eg =f and finally ( E  + F ) ( f +  g )  = ( 1  + a) ( f+  g ) .  
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